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Introduction
Mullainathan and Spiess (2017) note that machine learning revolves around the problem of prediction Ŷ while
many economic applications instead revolve around parameter estimation (β̂). Therefore, applying machine
learning algorithms to economics requires finding relevant prediction tasks. One category of such applications
appears when the key object of interest is the parameter β, but the inference procedures contain a prediction
task. For example, the first stage of instrumental variables (IV) regression is effectively a prediction. 1

Since most machine learning methods are built for prediction and typically outperform ordinary least squares
at this task, using machine learning methods for estimation of the first stage in an IV setting with very
many potential instrumental variables can lead to more accurate first-stage predictions and more precise
second-stage estimates. Mogstad, Torgovitsky, and Walters (2021) report a survey of empirical papers using
instrumental variables (IVs) that were published in leading economics journals since 2000. More than half of
these papers report results from a specification with multiple IVs for a single treatment, typically combined
using two-stages least squares (2SLS). The authors classify these papers into three types by the relationship
between their multiple IVs. A 67% of these studies use multiple economically distinct instruments, a 13%
includes studies that use interaction of covariates with a single instrument, the remaining 19% of the studies
use multiple functions of a single instruments. Currently, several papers adapt machine learning techniques
for selecting a subset of large number of instruments to predict the first stage of a linear regression (e.g.
Belloni et al. 2012). However, the risk of applying out-of-the-box machine learning methods for 2SLS type
applications are less clear (Lennon, Rubin, and Waddell 2021).

In this article I study the performance of three-based methods (random forest and boosting) in an IV setting
with a binary endogenous explanatory variable. In particular, I apply these machine learning methods to
estimate the returns to college attendance, simulating the data used by Carneiro, Heckman, and Vytlacil
(2011).

Methodology
In this section I provide a brief introduction to instrumental variables and two tree-based machine learning
techniques: gradient boosting and random forest.

Instrumental variables
Consider a linear population model

(1) Y = β0 + β1x1 + β2x2 + . . . + βKxK + u

E(u) =, Cov(xK , u) = 0, k = 1, 2, ...,K − 1

but were xK might be correlated with u. In other words, the explanatory variables x1, x2, ..., xK−1 are
exogenous but xK is potentially endogenous in equation (1). In applied econometrics endogeneity usually
arises in one of three ways: omitted variables, measurement error and simultaneity. Ordinary least squares

1This point has been recognized in the literature [@belloni2012sparse;@mullainathan2017machine;@angrist2022machine].
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(OLS) estimation of equation (1) generally results in inconsistent estimators of all the βi if Cov(xK , u) 6= 0.
In the simulation

The method of IV provides a general solution to the problem of an endogenous explanatory variable. To use
the IV approach with xK endogenous, we need an observable variable z1 not in equation (1), that satisfies
two conditions.

• First, exclusion restriction, z1 must be uncorrelated with u: Cov(z1, u) = 0, therefore the excluded
instruments have no effect on outcome except through the treatment variable.

• Second, instrument relevance, z1 is correlated with the regressor xK .

The IV method is a two step procedure. Consider the familiar setting of the returns to schooling that we
are going to use throughout this study. An extensive literature argues that OLS estimates of the return to
schooling may be biased by unobserved differences in ability (e.g., Card 2001). The two-equation system
describing schooling (Si) and log wages (Yi) for individual i is the following:

(2) Si = 1[ψ + Ziπ +Xiδ + vi > 0]

(3) Yi = α+ βSi +Xiγ + ui

In general, taking care of endogeneity of non-linear models like the one with binary endogenous explanatory
variable is more challenging than in linear models. For instance, applying 2SLS reasoning directly to nonlinear
models leads to the so-called forbidden regression and inconsistent estimates (Hausman 1975). In the case of
endogenous explanatory variable that happens to be a dummy variable we might use a nonlinear first stage
such as logit or probit model.

Random Forest
In standard classification or regression forests as proposed by Breiman (2001), the prediction for a particular
test point x is determined by averaging predictions across an ensemble of different de-correlated trees.
Individual trees are grown by greedy recursive partitioning, that is, we recursively add axis-aligned splits to
the tree, where each split is chosen to maximize the improvement to model fit. The trees are randomized
using boostrap (or subsample) agregation, whereby each tree is grown in a different subset of the training
data, and random split selection that restricts the variables available at each step of the algorithms.

A tree is represented as f(x) and a random forest (regression) predictor with B number of bootstrapped
tress can be written as:

(4) F (x) = 1
B

B∑
b=1

fbx

In detail, random forest bootstraps the training data B number of times by randomly selecting m variables
form p input variables each time before another split is made. Selecting only a subset of variables decorrelates
the trees and prevents over fitting by decreasing the variance of the predicted values. This limitation of
cutting only in p variables prevents strong predictors from dominating all the trees.

Boosting
Friedman (2001) introduces gradient boosting as an additive ensemble model where a weighted sum of base
tree models are added together. The trees are grown sequentially, unlike random forest where each tree are
grown separately and then averaged. At each iteration, a new tree is added to a weighted sum of all previous
trees.

The model is initialized at the average of the outcomes, ȳ for N observations. At each subsequent iteration,
the model parameters are chosen to correct the error, or loss function 2, from the previous iteration with

2There is a variety of different loss functions, e.g. sum of squares loss function L(y, F (x)) = − 1
2 (y − F (x))2
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an additional tree and a subsample of the original data. Suppose there are M iterations, then the model is
defined

(5) FM (x) =
M∑

m=1
ρfm(x)

where fm(x) is the tree at iteration m and ρ is a shrinkage parameter to prevent overfit and to slow down the
learning process. By setting ρ to be a smaller number, usually between 0.01 and 0.1, this put small weight
on each additional tree and makes the final prediction less sensitive. fm(x) is usually chosen to be a stump
where the input space is cut by one variable; the deep of the trees can be increased but performs best with
few terminal nodes.

Simulation Studies
In this section the results of the simulations studies are presented to assess the performance of the different
estimators introduced in the last section in the setting of a model with a binary endogenous explanatory
variable. The baseline data generating process (DGP) for all the cases we consider in this section resembles
to the DGP we get when we simulate the data used by Carneiro, Heckman, and Vytlacil (2011) to estimate
the returns to college attendance. The results of different scenarios are discussed. I start with a very simple
low-complexity scenario with a single binary endogenous regressor and a single instrument. Later I move to
a high-complexity scenario where there are many available instruments but there exits only a small set of
strong instruments. Next I consider another high complexity case, a linear model with many instruments, all
of which are weak. Finally, I fully consider the model employed by Carneiro, Heckman, and Vytlacil (2011)
to estimate the returns to college attendance.

Case 1: One instrument no covariates
In order to examine the performance of non-linear three-based methods in 2SLS I start with a very simple
low-complexity scenario with a single binary endogenous regressor and a single instrument. This case allow
us to test how replacing first stage OLS with either boosted trees or random forests perform when there is
little to be gained from variable selection.

The data D = {(yi, xi, zi)i|i = 1, 2, ..., N} is generated using the following GDP:

(6);
y = βx+ u

(7);x = 1[αz + v > 0] (8); (
u
v

)
= N(

[
0
0

]
,

[
σu σuv

σvu σv

]
)

(9);
z ∼ N(0, 1)

Where β = (β0, β1) = (−0.9, 0.75) are the parameters of interest. We also let σu = 1,σv = 1. The correlation
structure in (8), leads to E(x.u) 6= 0 implying an endogeneity issue. We consider a sample size n of 1000; we
consider a value of sigma of σuv: 0.3. We assume α = (α0, α1) = (0.3, 0.3).

For the first-stage prediction I expect logit outperforms non-linear models like random forest or boosted tree
since there is no need of variable selection. For the second stage, I can expect that 2SLS, which uses logit in
the first-stage and OLS in the second-stage, yields consistent and unbiased estimates of the true parameter. I
can also expect that the OLS estimator that entirely ignores endogeneity generates a biased beta. Regarding
the tree-based methods, I can expect they perform poorly given a previous simulation studies performed in
low-complexity scenarios (Lennon, Rubin, and Waddell 2021; Angrist and Frandsen 2022).
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Table 1: Test MSE in the first-stage prediction of a 2SLS

Train Test
Logit 0.36674 0.36774
randomForest 0.44306 0.43896
Boost 0.33382 0.48952
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## Warning: Ignoring unknown parameters: text

Table 2: Beta hat 1 distribution across competing two-stage methods

Coefficient Std. dev. Bias
OLS 1.2190903 0.0894529 -0.4690903
TSLS train 0.7583112 0.5026004 -0.0083112
TSLS test 0.8133937 0.5026245 -0.0633937
randomForest train 0.0786142 0.1725044 0.6713858
randomForest test 0.1414581 0.1731754 0.6085419
Boost train 0.2829207 0.0678792 0.4670793
Boost test 0.0109307 0.0740360 0.7390693
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I showed that highly non-linear tree-based methods (random forest and boosted forest) can amplify bias,
providing parameter estimates farther from truth similar to naive OLS regressions that ignore endogeneity.
In this low complexity scenario, tree-based 2SLS methods are overkill: neither variable selection, non-linearity
are necesary. As our results demonstrate, random forest and boosting can increase bias relatively to 2SLS
(with logit) and even endogenous OLS.

Case 2: Many instruments with strong sparcity and no covariates
As a high-complexity case, we construct a DGP with two extensions. This DGP allows the researcher to
customize instruments’ strength, and with many instruments. In the tree high-complexity cases injecting
boosting or random forest in the first stage, on average, produces more biased estimates than naive endogenous
OLS. In short, one can worsen endogeneity issues by using ML-based 2SLS estimators.

The data D = {(yi, xi, zi)i|i = 1, 2, ..., N} is generated using the following GDP. (2);

y = β0 + β1x+ u

(3);x = 1[α0 +H(z)′α1 + v > 0] (4); (
u
v

)
= N(

[
0
0

]
,

[
σu σuv

σvu σv

]
)

(5);
z ∼ NJ(0, 1)

Where β = (β0, β1) = (−0.9, 0.75) are the parameters of interest. I also let σu = 1,σv = 1 and J = 100 for all
of our simulations. The correlation structure in (4), leads to E(x.u) 6= 0 implying an endogeneity issue. The
sample size n is 1000; I consider for σuv: 0.3. For H(.), I assume, H(z) = [1, 1, ..., 1, 1, 0, 0, ..., 0, 0]z, with the
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1s representing s strong instruments, s= 25. The strong sparcity assumption is met because a small subset of
the 100 candidate instruments are valid. I use α1 = 5

s which ensures that the instruments have the same
impact on x independent of the value of s.

For the first-stage prediction I expect logit under performs or performs similar to non-linear models like
random forest or boosted tree since it is needed variable selection. For the second stage, I can expect that
2SLS, which uses logit in the first-stage and OLS in the second-stage, yields consistent and unbiased estimates
of the true parameter. I can also expect that the OLS estimator that entirely ignores endogeneity generates a
biased beta 1. Regarding the tree-based methods, I can expect that boosting performs poorly given a previous
simulation study performed in high-complexity scenario (Lennon, Rubin, and Waddell 2021). However, I
would expect random forest to perform well.

Table 3: Test MSE in the first-stage prediction of a 2SLS

Train Test
Logit 0e+00 0.09248
randomForest 0e+00 0.09248
regression_forest 6e-04 0.49838
Boost 0e+00 0.09248
XGBoost 0e+00 0.09248
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## Warning: Ignoring unknown parameters: text
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Table 4: Beta hat 1 distribution across competing two-stage methods

Coefficient Std. dev. Bias
OLS 0.7630221 0.0894472 -0.0130221
TSLS train 0.7440293 0.0895129 0.0059707
TSLS test 0.6297210 0.0922472 0.1202790
randomForest tr 0.8227180 0.0991156 -0.0727180
randomForest ts 0.6896219 0.1014390 0.0603781
regression_forest tr 0.8255292 0.0999375 -0.0755292
regression_forest ts 0.0095527 0.1067887 0.7404473
Boost train 0.0346703 0.0041711 0.7153297
Boost test 0.0289572 0.0042700 0.7210428
XGBoost train 0.7498166 0.0902092 NA
XGBoost test 0.6262645 0.0923475 NA
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Ensemble methods such as random forests or gradient boosted trees combine the results of multiple trees in
order to improve prediction accuracy and to reduce variance. The last amplify bias. This variance-reduction
aspect is particularly relevant for non-linear methods Tree-based methods. The results of this second case
(many instruments with strong sparcity) shows that boosting can amplify bias, providing parameter estimates
farther from truth. Random forest performs well and it is very similar to the TSLS. It is surprising that the
naive OLS performs well, even better than boosting.
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Case 3: Many week instruments no covariates
We next consider the case of a linear causal model with many instruments, all of which are weak- The issue
with many week instruments is that, when the sparcity assumption breaks down, variable selection methods
like random forests and boosting tend to select any variable or select all variables, which leads to poor
asymptotics.

The data D = {(yi, xi, zi)i|i = 1, 2, ..., N} is generated using the following GDP. (2);

y = β0 + xβ1 + u

(3);
x = 1[α0 +H(z)′α1 + v > 0]

(4); (
u
v

)
= N(

[
0
0

]
,

[
σu σuv

σvu σv

]
)

(5);
z ∼ NJ(0, 1)

Where β = (β0, β1) = (−0.9, 0.75) are the parameters of interest. We also let σu = 1,σv = 1 and J = 100 for
all our simulations. The correlation structure in (4), leads to E(x.u) 6= 0 implying an endogeneity issue. The
sample size n is 1000; I consider a value for σuv: 0.3. For H(.), we assume H(z) = [1, 1, ..., 1, 1]z with the 1s
representing J week instruments. We assume α = (α0, α1) = (0.3, 0.03).

Table 5: Test MSE in the first-stage prediction of a 2SLS

Train Test
Logit 0.01004 0.17652
randomForest 0.01040 0.17646
regression_forest 0.01104 0.49664
Boost 0.00794 0.17740
XGBoost 0.00000 0.18038
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## Warning: Ignoring unknown parameters: text

Table 6: Beta hat 1 distribution across competing two-stage methods

Coefficient Std. dev. Bias
OLS 0.8988992 0.0892023 -0.1488992
TSLS train 0.8794602 0.0910955 -0.1294602
TSLS test 0.4953488 0.0958931 0.2546512
randomForest tr 0.9912731 0.1036937 -0.2412731
randomForest ts 0.5614028 0.1090721 0.1885972
regression_forest tr -0.2352932 0.0134273 0.1119802
regression_forest ts 0.7365727 0.0558263 0.0059060
Boost train 0.6941737 0.0326331 0.0065060
Boost test 0.7173669 0.9110947 0.0907501
XGBoost train NA 0.4929253 0.0970325
XGBoost test NA 0.8988992 0.0892023
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Case 4:
Carneiro, Heckman, and Vytlacil (2011) uses multiple instrumental variables to estimate the return to college
in a sample of white men from the National Longitudinal Survey of Youth (NLSY) 1979 Cohort. We use
their sample.

An extensive literature argues that OLS estimates of the return to schooling may be biased by unobserved
differences in ability (e.g., Card 2001). Motivated by this concern, consider a two-stage least squares estimates
of the system describing schooling (Si) and log wages (Yi) for individual i.

We begin with a first stage equation predicting college attendance, Si. Si equals one for individuals that
attended college. This equation include a vector of controls Xi and instruments Zi. The instruments Z are
(i) the presence of a four-year college in the county of residence at age 14 as a measure of distance to college,
(ii) local wage in the county of residence at age 17, (iii) local unemployment in the state of residence at age
17, and (iv) average tuition in public four-year colleges in the county of residence at age 17. In the selection
equation we include as well the interactions of the four instruments with AFQT, maternal education, and
number of siblings.

(7) Si = 1[ψ + Ziπ +Xiδ + vi > 0]

Our second stage estimates are given by:

(8) Yi = α+ βŜi +Xiγ + ui

The outcome variable Yi is the log of individuals i’s average hourly wage from 1989 to 1993. Ŝi is the
prediction of college attendance. Throughout our analysis we control for a vector Xi of covariates that
includes AFQT (Armed Forces Qualification Test) scores, mother’s years of education, number of siblings,
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urban residence at age 14, year of birth indicators, permanent local earnings (defined as average log earnings
in the age 17 county of residence from 1973 to 2000), average unemployment in state of residence at 17 and
average log earnings in the county of residence in 1991.

The Table below reports descriptive statistics for key variables in the Carneiro, Heckman, and Vytlacil (2011).
# Load data
local_level_dta <- haven::read_dta(file.path(data_dir,'localvariables.dta'))
basic_level_dta <- haven::read_dta(file.path(data_dir,'basicvariables.dta'))

card_data <- cbind.data.frame(basic_level_dta,local_level_dta)

stargazer(card_data, header=FALSE, type='latex',digits = 2)

Table 7:

Statistic N Mean St. Dev. Min Max
caseid 1,747 3,330.38 2,541.55 6 12,139
urban14 1,747 0.74 0.44 0 1
numsibs 1,747 2.93 1.91 0 15
mhgc 1,747 12.10 2.33 0 20
school 1,747 2.67 0.97 1 4
d57 1,747 0.10 0.30 0 1
d58 1,747 0.10 0.30 0 1
d59 1,747 0.10 0.31 0 1
d60 1,747 0.13 0.34 0 1
d61 1,747 0.13 0.34 0 1
d62 1,747 0.17 0.37 0 1
d63 1,747 0.14 0.35 0 1
cafqt 1,747 0.45 0.95 −2.66 2.73
state 1,747 0.50 0.50 0 1
wage 1,747 2.38 0.50 0.06 4.31
const 1,747 1.00 0.00 1 1
exp 1,747 8.49 3.58 0.00 16.60
expsq 1,747 84.87 61.39 0.00 275.43
pub4 1,747 0.52 0.50 0 1
avurate 1,747 6.25 0.99 3.47 8.72
lavlocwage17 1,747 10.28 0.19 9.71 10.85
tuit4c 1,747 21.57 7.98 0.00 67.43
lwage5 1,747 10.29 0.17 9.93 10.69
lurate 1,747 6.81 1.27 2.60 10.50
lwage5_17 1,747 10.28 0.16 9.93 11.18
lurate_17 1,747 7.08 1.81 2.80 12.50
newid 1,747 7,095.07 3,223.85 1,282 12,684

In this section the results of the simulations

The baseline DGP where the individual observations i = 1, ..., n are independently drawn from is assumed as
follows:

The error terms (u, v) are chosen to jointly follow a bivariate normal distribution:

(4); (
u
v

)
= N(

[
0
0

]
,

[
σu σuv

σvu σv

]
)
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Without loss of generality, the exogenous variables x and z are normally distributed with mean and standard
deviation corresponding to the variables in the original data set. The binary endogenous explanatory variable
(S) is generated such that the shares of zeros and ones is close to 50%.

(7) S∗i = ψ + Ziπ +Xiδ + vi

(7) Si = 1[S∗i > mean(S∗i )]

The dependent variable is generated as:

(8) Yi = α+ βSi +Xiγ + ui

dgp_card <- function(n_obs,basic_level_data,local_level_data,alpha_1,alpha_2,beta,
mean_eps,sigma_eps,interaction="FALSE") {

# basic variables
x0 <- rep(1,n_obs)
x1_cafqt <- rnorm(n_obs,mean(basic_level_dta$cafqt),sd(basic_level_dta$cafqt))
x2_cafqtsq <- x1_cafqtˆ2
x3_msch <- rnorm(n_obs,mean(basic_level_dta$mhgc),sd(basic_level_dta$mhgc))
x4_mschsq <- x3_mschˆ2
x5_numsibs <- rnorm(n_obs,mean(basic_level_dta$numsibs),sd(basic_level_dta$numsibs))
x6_numsibs_sq <- x5_numsibsˆ2
x7_urban14 <- rbinom(n_obs,1,mean(basic_level_dta$urban14))
prob.x_d <- as.vector(colMeans(basic_level_dta[,c(6:12)]))
x8_d <- sample(c(57:63), n_obs, replace=TRUE, prob=prob.x_d)
x8_year <- model.matrix(~ factor(x8_d) + 0)
x9_exp <- rnorm(n_obs,mean(basic_level_dta$exp),sd(basic_level_dta$exp))
x10_expsq <- x9_expˆ2
# local variables
x11_avlocwage17 <- rnorm(n_obs,mean(local_level_dta$lavlocwage17),sd(local_level_dta$lavlocwage17))
x12_avlocwage17_sq <- x11_avlocwage17ˆ2
x13_avurate <- rnorm(n_obs,mean(local_level_dta$avurate),sd(local_level_dta$avurate))
x14_avurate_sq <- x13_avurateˆ2
x15_lwage_1991 <- rnorm(n_obs,mean(local_level_dta$lwage5),sd(local_level_dta$lwage5))
x16_lurate_1991 <- rnorm(n_obs,mean(local_level_dta$lurate),sd(local_level_dta$lurate))
# Instruments
z1_pub4 <- rbinom(n_obs,1,mean(local_level_dta$pub4)) # college proximity
z2_lwage5_17 <- rnorm(n_obs,mean(local_level_dta$lwage5_17),sd(local_level_dta$lwage5_17))
z3_lurate_17 <- rnorm(n_obs,mean(local_level_dta$lurate_17),sd(local_level_dta$lurate_17))
z4_tuit4c <- rnorm(n_obs,mean(local_level_dta$tuit4c),sd(local_level_dta$tuit4c))
# Defining x and y
sigma_ev <- matrix(c(1,sigma_eps,sigma_eps,1),2)
u <- mvrnorm(n_obs,mean_eps,sigma_ev)
x.2 <- cbind(x0,x1_cafqt,x2_cafqtsq,x3_msch,x4_mschsq,x5_numsibs,x6_numsibs_sq,

x7_urban14,x8_year[,-1],x11_avlocwage17,x12_avlocwage17_sq,
x13_avurate,x14_avurate_sq,x9_exp,x10_expsq,x15_lwage_1991,x16_lurate_1991)

if (interaction==FALSE & length(alpha_1)==5){
z.1 <- cbind(rep(1,n_obs),z1_pub4,z2_lwage5_17,z3_lurate_17,z4_tuit4c)
mean.con.x1 <- mean(z.1%*%alpha_1 + x.2[,2:22]%*%alpha_2 + u[,1])
x.1 <- (z.1%*%alpha_1 + x.2[,2:22]%*%alpha_2 + u[,1] > mean.con.x1)*1

} else if (interaction==TRUE & length(alpha_1)==17){
x.inter <- cbind(x1_cafqt,x3_msch,x5_numsibs)
z.1 <- cbind(rep(1,n_obs),z1_pub4,z2_lwage5_17,z3_lurate_17,z4_tuit4c,

z1_pub4*x.inter,z2_lwage5_17*x.inter,z3_lurate_17*x.inter,z4_tuit4c*x.inter)
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mean.con.x1 <- mean(z.1%*%alpha_1 + x.2[,2:22]%*%alpha_2 + u[,1])
x.1 <- (z.1%*%alpha_1 + x.2[,2:22]%*%alpha_2 + u[,1] > mean.con.x1)*1

}

y = beta[1]*x.2[,1] + beta[2]*x.1 + x.2[,2:22]%*%beta[3:23] + u[,2]

data <- data.frame("y"=y,"x.1"=x.1,x.2[,-1],z.1[,-1])
return(data)

}

prediction_first_stage_iv_card <- function(n_simulations,n_observations,
basic_level_data,local_level_data,
alpha_1,alpha_2,beta,mean_eps,sigma_eps,
interaction="FALSE"){

mse_logit_card <- matrix(NA,n_simulations,2)
mse_rf_card <- matrix(NA,n_simulations,2)
mse_boost_card <- matrix(NA,n_simulations,2)
mse_xgboost_card <- matrix(NA,n_simulations,2)

beta_1_ols_card <- matrix(NA,n_simulations,4)
beta_1_tsls_card <- matrix(NA,n_simulations,4)
beta_1_rf_card <- matrix(NA,n_simulations,4)
beta_1_boost_card <- matrix(NA,n_simulations,4)
beta_1_xgboost_card <- matrix(NA,n_simulations,4)

bias_beta_1_ols_card <- rep(NA,n_simulations)
bias_beta_1_tsls_card <- matrix(NA,n_simulations,2)
bias_beta_1_rf_card <- matrix(NA,n_simulations,2)
bias_beta_1_boost_card <- matrix(NA,n_simulations,2)
bias_beta_1_xgboost_card <- matrix(NA,n_simulations,2)

for (i in 1:n_simulations){
train_data <- dgp_card(n_observations,basic_level_data,local_level_data,

alpha_1,alpha_2,beta,mean_eps,
sigma_eps,interaction="FALSE")

test_data <- dgp_card(n_observations,basic_level_data,local_level_data,
alpha_1,alpha_2,beta,mean_eps,
sigma_eps,interaction="FALSE")

# OLS model
ols <- lm(y ~ .,data=test_data[,1:23])
beta_1_ols_card[i,1] = coefficients(ols)[2]
beta_1_ols_card[i,2] = sqrt(diag(vcov(ols)))[2]
bias_beta_1_ols_card[i] = beta[2]- beta_1_ols_card[i,1]

# Estimation of the first stage with logit
logit <- glm(x.1 ~ . -y, family = "binomial", data = train_data)
train_data$pred_logit_x <- predict(logit,type ="response")
test_data$pred_logit_x <- predict(logit,newdata=test_data,type ="response")
x_hat_logit_tr <- ifelse(train_data$pred_logit_x > 0.5,1,0)
x_hat_logit_ts <- ifelse(test_data$pred_logit_x > 0.5,1,0)
mse_logit_card[i,1] = mean(train_data$x.1 != x_hat_logit_tr)
mse_logit_card[i,2] = mean(test_data$x.1 != x_hat_logit_ts)
# Estimation of the second stage with OLS
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if (interaction == TRUE){
tsls_train <- lm(y ~ . - x.1,data=train_data[,-c(24:39)])
tsls_test <- lm(y ~ . - x.1,data=test_data[,-c(24:39)])

} else if (interaction == FALSE){
tsls_train <- lm(y ~ . - x.1,data=train_data[,-c(24:27)])
tsls_test <- lm(y ~ . - x.1,data=test_data[,-c(24:27)])

}
beta_1_tsls_card[i,1] = coefficients(tsls_train)[23]
beta_1_tsls_card[i,2] = sqrt(diag(vcov(tsls_train)))[23]
beta_1_tsls_card[i,3] = coefficients(tsls_test)[23]
beta_1_tsls_card[i,4] = sqrt(diag(vcov(tsls_test)))[23]
bias_beta_1_tsls_card[i,1] = beta[2]- beta_1_tsls_card[i,1]
bias_beta_1_tsls_card[i,2] = beta[2]- beta_1_tsls_card[i,3]

# Estimation of the first stage with randomForest
rf <- randomForest(x.1 ~ .-y,data=train_data,ntrees=100)
train_data$predict_rf_x <- predict(rf,type="class",ntrees=100) # Predict on out-of-bag training samples
x_hat_rf_tr <- ifelse(train_data$predict_rf_x > 0.5,1,0)
test_data$predict_rf_x <- predict(rf,type="class",newdata = test_data,ntrees=100)
x_hat_rf_ts <- ifelse(test_data$predict_rf_x > 0.5,1,0)
mse_rf_card[i,1] = mean(train_data$x.1 != x_hat_rf_tr)
mse_rf_card[i,2] = mean(test_data$x.1 != x_hat_rf_ts)
# Estimation of the second stage with OLS
if (interaction == TRUE){

tsls_rf_train <- lm(y ~ . - x.1,data=train_data[,-c(24:40)])
tsls_rf_test <- lm(y ~ . - x.1,data=test_data[,-c(24:40)])

} else if (interaction == FALSE){
tsls_rf_train <- lm(y ~ . - x.1,data=train_data[,-c(24:28)])
tsls_rf_test <- lm(y ~ . - x.1,data=test_data[,-c(24:28)])

}
beta_1_rf_card[i,1] = coefficients(tsls_rf_train)[23]
beta_1_rf_card[i,2] = sqrt(diag(vcov(tsls_rf_train)))[23]
beta_1_rf_card[i,3] = coefficients(tsls_rf_test)[23]
beta_1_rf_card[i,4] = sqrt(diag(vcov(tsls_rf_test)))[23]
bias_beta_1_rf_card[i,1] = beta[2]- beta_1_rf_card[i,1]
bias_beta_1_rf_card[i,2] = beta[2]- beta_1_rf_card[i,3]

# Estimation of the first stage with boost
boost <- gbm(x.1 ~ .-y,data=train_data,distribution="bernoulli",n.trees=100)
train_data$predict_boost_x <- predict(boost,n.trees=100) # Predict on out-of-bag training samples
x_hat_boost_tr <- ifelse(train_data$predict_boost_x > 0.5,1,0)
test_data$predict_boost_x <- predict(boost,newdata = test_data,n.trees=100)
x_hat_boost_ts <- ifelse(test_data$predict_boost_x > 0.5,1,0)
mse_boost_card[i,1] = mean(train_data$x.1 != x_hat_boost_tr)
mse_boost_card[i,2] = mean(test_data$x.1 != x_hat_boost_ts)
# Estimation of the second stage with OLS
if (interaction == TRUE){

tsls_boost_train <- lm(y ~ . - x.1,data=train_data[,-c(24:41)])
tsls_boost_test <- lm(y ~ . - x.1,data=test_data[,-c(24:41)])

} else if (interaction == FALSE){
tsls_boost_train <- lm(y ~ . - x.1,data=train_data[,-c(24:29)])
tsls_boost_test <- lm(y ~ . - x.1,data=test_data[,-c(24:29)])

}
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beta_1_boost_card[i,1] = coefficients(tsls_boost_train)[23]
beta_1_boost_card[i,2] = sqrt(diag(vcov(tsls_boost_train)))[23]
beta_1_boost_card[i,3] = coefficients(tsls_boost_test)[23]
beta_1_boost_card[i,4] = sqrt(diag(vcov(tsls_boost_test)))[23]
bias_beta_1_boost_card[i,1] = beta[2]- beta_1_boost_card[i,1]
bias_beta_1_boost_card[i,2] = beta[2]- beta_1_boost_card[i,3]

# Estimation of the first stage with XGBoost
train_data_mod <- as.matrix(train_data)
test_data_mod <- as.matrix(test_data)
train_x <- train_data_mod[,2]
train_z <- train_data_mod[,-c(1:2)]
xgb_train <- xgb.DMatrix(data = train_z,label = train_x)
test_x <- test_data_mod[,2]
test_z <- test_data_mod[,-c(1:2)]
xgb_test <- xgb.DMatrix(data = test_z, label = test_x)
xg_boost <- xgboost(data=xgb_train,max.depth=3,eta=0.3,nrounds=60,

objective = "binary:logistic",verbose=FALSE)
train_data$predict_xg_boost_x <- predict(xg_boost,xgb_train)
x_hat.tr <- ifelse(train_data$predict_xg_boost_x > 0.5,1,0)
test_data$predict_xg_boost_x <- predict(xg_boost,newdata=xgb_test)
x_hat.ts <- ifelse(test_data$predict_xg_boost_x > 0.5,1,0)
mse_xgboost_card[i,1] = mean(train_data$x.1 != x_hat.tr) #mse of xgboost in train data
mse_xgboost_card[i,2] = mean(test_data$x.1 != x_hat.ts) #mse of xgboost in test data
# Estimation of the second stage with OLS
if (interaction == TRUE){

tsls_xgboost_train <- lm(y ~ . - x.1,data=train_data[,-c(24:42)])
tsls_xgboost_test <- lm(y ~ . - x.1,data=test_data[,-c(24:42)])

} else if (interaction == FALSE){
tsls_xgboost_train <- lm(y ~ . - x.1,data=train_data[,-c(24:30)])
tsls_xgboost_test <- lm(y ~ . - x.1,data=test_data[,-c(24:30)])

}
beta_1_xgboost_card[i,1] = coefficients(tsls_xgboost_train)[23]
beta_1_xgboost_card[i,2] = sqrt(diag(vcov(tsls_xgboost_train)))[23]
beta_1_xgboost_card[i,3] = coefficients(tsls_xgboost_test)[23]
beta_1_xgboost_card[i,4] = sqrt(diag(vcov(tsls_xgboost_test)))[23]
bias_beta_1_xgboost_card[i,1] = beta[2]- beta_1_xgboost_card[i,1]
bias_beta_1_xgboost_card[i,2] = beta[2]- beta_1_xgboost_card[i,3]

}
return(list(mse_logit=mse_logit_card,mse_rf=mse_rf_card,mse_boost=mse_boost_card,

mse_xgboost=mse_xgboost_card,beta_1_ols=beta_1_ols_card,
beta_1_tsls=beta_1_tsls_card,beta_1_rf=beta_1_rf_card,
beta_1_boost=beta_1_boost_card,beta_1_xgboost=beta_1_xgboost_card,
bias_beta_1_ols=bias_beta_1_ols_card,
bias_beta_1_tsls=bias_beta_1_tsls_card,bias_beta_1_rf=bias_beta_1_rf_card,
bias_beta_1_boost=bias_beta_1_boost_card,
bias_beta_1_xgboost=bias_beta_1_xgboost_card))

}

Table 8: Test MSE in the first-stage prediction of a 2SLS

Train Test
Logit 0.00286 0.02688
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Train Test
RF 0.00315 0.02688
Boost 0.00187 0.02690
XGBoost 0.00003 0.02700
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## Warning: Ignoring unknown parameters: text

Table 9: Beta hat 1 distribution across competing two-stage methods

Coefficient Std. dev. Bias
OLS 0.1704453 0.1057750 -0.0404453
TSLS train 0.1684623 0.1059907 -0.0384623
TSLS test 0.1059147 0.1067482 0.0240853
RF train 0.1788420 0.1137713 -0.0488420
RF test 0.1143509 0.1145947 0.0156491
Boost train 0.0104832 0.0063958 0.1195168
Boost test 0.0060284 0.0064235 0.1239716
XGBoost train 0.1797366 0.1055446 -0.0497366
XGBoost test 0.1041419 0.1064620 0.0258581
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The results of this last case shows that compared to the previous scenarios, tree-based methods and logit
regression yield similar MSEs in the firs-stage prediction. Regarding the second-stage, 2SLS, naive OLS,
random forest and XGBoost give almost consistent and unbiased estimators of β̂1, being the exception the
boosting forest.
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